INTERNATIONAL

Inline Filter LFM with Differential Pressure Relief Valve

up to 120 l/min, up to 63 bar

1. TECHNICAL **SPECIFICATIONS**

1.1 FILTER HOUSING

Construction

The filter housings are designed in accordance with international regulations. They consist of a filter head and a screw-in filter bowl.

Standard equipment:

- with differential pressure controlled relief valve
- connection for a clogging indicator

1.2 FILTER ELEMENTS

HYDAC filter elements are validated and their quality is constantly monitored according to the following standards:

- ISO 2941
- ISO 2942
- ISO 2943
- ISO 3724
- ISO 3968 ● ISO 11170
- ISO 16889

Contamination retention capacities in a

9						
	Betamicron® BN4HC					
LFM	3 µm	5 µm	10 µm	20 µm		
60	6.5	7.3	7.8	8.0		
110	13.8	15.5	16.4	16.9		
140	18.1	20.3	21.5	22.2		

Filter elements are available with the following pressure stability values: Betamicron® (BN4HC): 20 bar

1.3 FILTER SPECIFICATIONS

Nominal pressure	63 bar		
Fatigue strength	At nominal pressure 10 ⁶ cycles from 0 to nominal pressure		
Temperature range	-30 °C to +100 °C (LFM 140: -30 °C to -10 °C: p _{max} =31.5 bar)		
Material of filter head	Aluminium		
Material of filter bowl	Aluminium (steel for LFM 140)		
Type of clogging indicator	VM (differential pressure measurement up to 210 bar operating pressure)		
Pressure setting of the clogging indicator	2 bar (others on request)		
Bypass cracking pressure	3.5 bar (others on request)		

1.4 SEALS

NBR (= Perbunan)

1.5 INSTALLATION

As inline filter

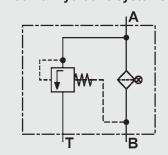
1.6 SPECIAL MODELS AND **ACCESSORIES**

Pressure release / oil drain plug (SO184)

1.7 SPARE PARTS

See Original Spare Parts List

1.8 CERTIFICATES AND APPROVALS On request


1.9 COMPATIBILITY WITH **HYDRAULIC FLUIDS ISO 2943**

- Hydraulic oils H to HLPD DIN 51524
- Lubrication oils DIN 51517, API, ACEA, DIN 51515, ISO 6743
- Compressor oils DIN 51506
- Biodegradable operating fluids VDMA 24568 HETG, HEES, HEPG
- Fire-resistant fluids HFA, HFB, HFC and HFD
- Operating fluids with high water content (>50% water content) on request

1.10 MAINTENANCE INSTRUCTIONS

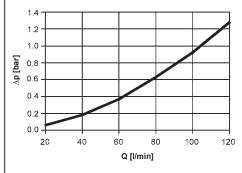
- Filter housings must be earthed.
- When using electrical clogging indicators, the electrical power supply to the system must be switched off before removing the clogging indicator connector.

Symbol for hydraulic systems

3. FILTER CALCULATION / **SIZING**

The total pressure drop of a filter at a certain flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\begin{array}{ll} \Delta p_{\text{total}} &= \Delta p_{\text{housing}} + \Delta p_{\text{element}} \\ \Delta p_{\text{housing}} &= (\text{see Point 3.1}) \\ \Delta p_{\text{element}} &= Q \bullet \frac{\text{SK*}}{1000} \bullet \frac{\text{viscosity}}{30} \\ &\quad (\text{*see point 3.2}) \end{array}$$

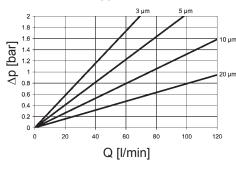

For ease of calculation, our Filter Sizing Program is available on request free of charge.

NEW: Sizing online at www.hydac.com

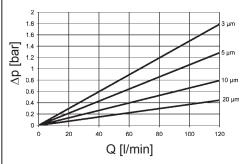
3.1 Δ p-Q HOUSING CURVES BASED **ON ISO 3968**

The housing curves apply to mineral oil with a density of 0.86 kg/dm3 and a kinematic viscosity of 30 mm²/s. In this case, the differential pressure changes proportionally to the density.

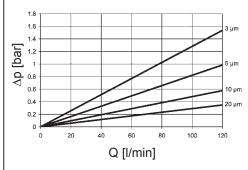
LFM 60/110/140

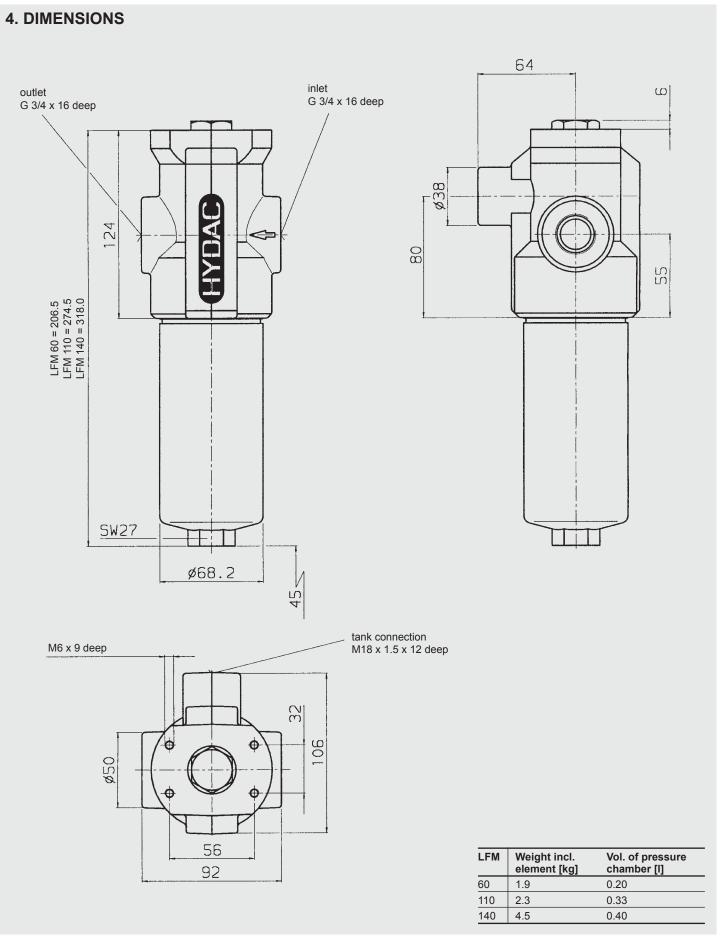


3.2 GRADIENT COEFFICIENTS (SK) FOR FILTER ELEMENTS


The gradient coefficients in mbar/(I/min) apply to mineral oils with a kinematic viscosity of 30 mm²/s. The pressure drop changes proportionally to the change in viscosity.

LFM	BN4HC					
	3 µm	5 μm	10 µm	20 μm		
60	28.9	20.4	13.2	7.9		
110	14.9	10.7	6.6	3.7		
140	12.8	8.2	4.8	2.9		




BN4HC: LFM 110

BN4HC: LFM 140

NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC FILTERTECHNIK GMBH

Industriegebiet

D-66280 Sulzbach/Saar, Germany

Tel.: 0 68 97 / 509-01 Fax: 0 68 97 / 509-300 Internet: www.hydac.com E-mail: filter@hydac.com